Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Plant Commun ; : 100931, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689495

RESUMEN

The apoplast is one of the first cellular compartments outside the plasma membrane that phytopathogenic microbes encounter in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense the danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing emerges as a critical mechanism to trigger alarms in the apoplast. In this review, we focus on the precursors of the phytocytokines, cell wall remodeling enzymes and proteases. The physiological events that convert the inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies between phytocytokines, cell wall damage associated molecular patterns and remodeling, highlighting their role in boosting extracellular immunity and reinforcing defenses against pests.

2.
Adv Healthc Mater ; : e2302896, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656615

RESUMEN

Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to treat diseases such as diabetes or hypertension. Here, this study proposes to extend the use of these technologies to (re-)establish the connection between new (transplanted or artificial) organs and the nervous system in order to increase the long-term efficacy and the effective biointegration of these solutions. In this perspective paper, some clinically relevant applications of this approach are briefly described. Then, the choices that neural engineers must implement about the type, implantation location, and closed-loop control algorithms to successfully realize this approach are highlighted. It is believed that these new "organ neuroprostheses" are going to become more and more valuable and very effective solutions in the years to come.

3.
Antioxid Redox Signal ; 40(7-9): 369-432, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299513

RESUMEN

Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.


Asunto(s)
Enfermedades Cardiovasculares , Selenio , Humanos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Selenoproteínas/metabolismo , Selenio/metabolismo , Inflamación
4.
Artículo en Inglés | MEDLINE | ID: mdl-38206450

RESUMEN

BACKGROUND: Mitral isthmus (MI) conduction block is a fundamental step in anatomical approach treatment for persistent atrial fibrillation (PeAF). However, MI block is hardly achievable with endocardial ablation only. Retrograde ethanol infusion (EI) into the vein of Marshall (VOM) facilitates MI block. Fluorographic myocardial staining (MS) during VOM-EI could be helpful in predicting procedural alcoholization outcome even if its role is qualitatively assessed in the routine. The aim was to quantitatively assess MS during VOM-EI and to evaluate its association with MI block achievement. METHODS: Consecutive patients undergoing catheter ablation for PeAF at Fondazione Toscana Gabriele Monasterio (Pisa, Italy) from February 2022 to May 2023 were considered. Patients with identifiable VOM were included. A proposed index of MS (MSI) was retrospectively calculated in each included patient. Correlation of MSI with low-voltage zones (LVZ) extension after VOM-EI and its association with MI block achievement were assessed. RESULTS: In total, 42 patients out of 49 (85.8%) had an identifiable VOM. MI block was successfully achieved in 35 patients out of 42 (83.3%). MSI was significantly associated with the occurrence of MI block (OR 1.24 (1.03-1.48); p = 0.022). A higher MSI resulted in reduced ablation time (p = 0.014) and reduced radiofrequency applications (p = 0.002) to obtain MI block. MSI was also associated with MI block obtained by endocardial ablation only (OR 1.07 (1.02-1.13); p = 0.002). MSI was highly correlated with newly formed LVZ extension (r = 0.776; p = 0.001). CONCLUSIONS: In our study cohort, optimal MSI predicts MI block and facilitates its achievement with endocardial ablation only.

5.
Cell Death Discov ; 9(1): 445, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065937

RESUMEN

Docetaxel (DCT) resistance is one of the main factors responsible for treatment failure in metastatic prostate cancer (PCa). Although several mechanisms of DCT resistance have been elucidated, the issue is still far from comprehensive. In this work we show that miR-96-5p, miR-183-5p and miR-210-3p (referred to as sDCTR-miRNAs) are specifically released by DCT resistant (DCTR) PCa clones and decrease the efficacy of DCT in PCa cells when overexpressed. Through bioinformatic analysis, we identified several potential targets of sDCTR-miRNAs' activity including FOXO1, IGFBP3, and PDCD4 known to exert a role in DCT resistance. Additionally, we found that PPP2CB and INSIG1 mediated the ability of sDCTR-miRNAs to reduce the efficacy of DCT. We explored whether secreted sDCTR-miRNAs could affect the phenotype of PCa cells. We found that exposure to exosomes derived from DCTR PCa clones (in which the content of sDCTR-miRNAs was higher than in exosomes from parental cells), as well as exposure to exosome loaded with sDCTR-miRNAs, reduced the cytotoxicity of DCT in PCa cells sensitive to the drug. Finally, we validated circulating miR-183-5p and miR-21-5p as potential predictive biomarkers of DCT resistance in PCa patients. Our study suggests a horizontal transfer mechanism mediated by exosomal miRNAs that contributes to reduce docetaxel sensitivity and highlights the relevance of cell-to-cell communication in drug resistance.

6.
Geroscience ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38012365

RESUMEN

Significant regional variability in lifespan in Europe is influenced by environmental factors and lifestyle behaviors, including diet. This study investigates the impact of geographical region on the lifespan of European rulers spanning from the fourteenth century to the present day. By analyzing historical records and literature, we aim to identify region-specific dietary patterns and lifestyle factors that may have contributed to longer lifespans among rulers. The hypothesis to be tested is that rulers from Southern European countries, where the traditional Mediterranean diet is consumed by the local people, may exhibit longer lifespans compared to rulers from other regions, due to the well-documented health benefits associated with this dietary pattern. We extracted comprehensive information for each ruler, encompassing their sex, birth and death dates, age, age of enthronement, duration of rulership, country, and cause of death (natural vs. non-natural). To determine their nationality, we coded rulers based on their hypothetical present-day residence (2023). Utilizing the EuroVoc Geographical classification, we categorized the countries into four regions: Northern, Western, Southern, Central and Eastern Europe. While Cox regression models did not find significant differences in survival rates among regions, further analysis stratified by time periods revealed intriguing trends. Contrary to our initial predictions, the Northern region displayed better survival rates compared to the Southern region between 1354 and 1499, whereas survival rates were similar across regions from 1500 to 1749. However, after 1750, all regions, except the Southern region, exhibited significantly improved survival rates, suggesting advancements in healthcare and lifestyle factors. These findings underscore the dynamic influence of both region and time period on health and longevity. Interestingly, despite the prevalence of the Mediterranean diet in the Southern region of Europe, rulers from this region did not demonstrate longer lifespans compared to their counterparts in other regions. This suggests that additional lifestyle factors may have played a more prominent role in their longevity. In conclusion, our study sheds light on the intricate relationship between region, time period, and lifespan among European rulers. Although the Mediterranean diet is often associated with health benefits, our findings indicate that it alone may not account for differences in ruler longevity across regions. Further research is warranted to explore the impact of other lifestyle factors on the health and lifespan of European rulers throughout history.

8.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166806, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437748

RESUMEN

Autophagy maintains cellular homeostasis and plays a crucial role in managing pathological conditions including ischemic myocardial injury leading to heart failure (HF). Despite treatments, no intervention can replace lost cardiomyocytes. Stem cell therapy offers potential for post-myocardial infarction repair but struggles with poor cell retention due to immune rejection. In the search for effective therapies, stem cell-derived extracellular vesicles (EVs), especially exosomes, have emerged as promising tools. These tiny bioactive molecule carriers play vital roles in intercellular communication and tissue engineering. They offer numerous therapeutic benefits including modulating immune responses, promoting tissue repair, and boosting angiogenesis. Additionally, biomaterials provide a conducive 3D microenvironment for cell, exosome, and biomolecule delivery, and enhance heart muscle strength, making it a comprehensive cardiac repair strategy. In this regard, the current review delves into the intricate application of extracellular vesicles (EVs) and biomaterials for managing autophagy in the heart muscle during cardiac injury. Central to our investigation is the exploration of how these elements interact within the context of cardiac repair and regeneration. Additionally, this review also casts light on the formidable challenges that plague this field, such as the issues of safety, efficacy, controlled delivery, and acceptance of these therapeutic strategies for effective clinical translation. Addressing these challenges is crucial for unlocking the full therapeutic potential of EV and biomaterial-based therapies and ensuring their successful translation from bench to bedside.


Asunto(s)
Exosomas , Lesiones Cardíacas , Humanos , Materiales Biocompatibles/uso terapéutico , Miocitos Cardíacos , Células Madre , Autofagia
9.
Plant Physiol Biochem ; 201: 107865, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37467533

RESUMEN

Plants involve a fine modulation of pectin methylesterase (PME) activity against microbes. PME activity can promote the cell wall stiffening and the production of damage signals able to induce defense responses and plant resistance to pathogens. However, the molecular mechanisms underlying PME activation during disease remain largely unknown. In this study, we explored the role of subtilases (SBTs) as PME activators in Arabidopsis immunity. By using biochemical and reverse genetic approaches, we found that the expression of SBT3.3 and SBT3.5 influences the induction of defense-related PME activity and resistance to the fungus Botrytis cinerea. Arabidopsis sbt3.3 and sbt3.5 knockout mutants showed decreased induction of PME activity and increased susceptibility to the fungus. SBT3.3 expression was stimulated by oligogalacturonides. Overexpression of SBT3.3 overactivated PME activity during fungal infection and enhanced resistance to B. cinerea. A negative correlation was observed between SBT3.3 expression and cell wall methyl ester content in the genotypes analyzed after B. cinerea infection. Increased expression of defense-related genes, including PAD3, CYP81F2 and WAK2, was also revealed in SBT3.3 overexpressing lines. We also demonstrated that SBT3.3 and pro-PME17 are both secreted into the cell wall using distinct protein secretion pathways and different kinetics. Our results propose SBT3.3 and SBT3.5 as modulators of PME activity in Arabidopsis against Botrytis to promptly boost immunity limiting the growth-defense trade-off.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Botrytis/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Inmunidad , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
10.
J Transl Med ; 21(1): 313, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161563

RESUMEN

BACKGROUND: Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS: Exosomes from low-dose SFN (3 µM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS: Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS: Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.


Asunto(s)
Exosomas , Miocitos Cardíacos , Masculino , Ratas , Ratones , Animales , Angiotensina II , Ratas Wistar , Fibroblastos , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Anticuerpos
11.
FEBS J ; 290(17): 4300-4315, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37098810

RESUMEN

Mechanisms underlying vascular endothelial susceptibility to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not fully understood. Emerging evidence indicates that patients lacking von Willebrand factor (vWF), an endothelial hallmark, are less severely affected by SARS-CoV-2 infection, yet the precise role of endothelial vWF in modulating coronavirus entry into endothelial cells is unknown. In the present study, we demonstrated that effective gene silencing by short interfering RNA (siRNA) for vWF expression in resting human umbilical vein endothelial cells (HUVECs) significantly reduced by 56% the cellular levels of SARS-CoV-2 genomic RNA. Similar reduction in intracellular SARS-CoV-2 genomic RNA levels was observed in non-activated HUVECs treated with siRNA targeting angiotensin-converting enzyme 2 (ACE2), the cellular gateway to coronavirus. By integrating quantitative information from real-time PCR and high-resolution confocal imaging, we demonstrated that ACE2 gene expression and its plasma membrane localization in HUVECs were both markedly reduced after treatment with siRNA anti-vWF or anti-ACE2. Conversely, siRNA anti-ACE2 did not reduce endothelial vWF gene expression and protein levels. Finally, SARS-CoV-2 infection of viable HUVECs was enhanced by overexpression of vWF, which increased ACE2 levels. Of note, we found a similar increase in interferon-ß mRNA levels following transfection with untargeted, anti-vWF or anti-ACE2 siRNA and pcDNA3.1-WT-VWF. We envision that siRNA targeting endothelial vWF will protect against productive endothelial infection by SARS-CoV-2 through downregulation of ACE2 expression and might serve as a novel tool to induce disease resistance by modulating the regulatory role of vWF on ACE2 expression.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Células Endoteliales/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , ARN Interferente Pequeño/genética , Silenciador del Gen
12.
Neuromodulation ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36997453

RESUMEN

OBJECTIVE: This study explored intraneural stimulation of the right thoracic vagus nerve (VN) in sexually mature male minipigs to modulate safe heart rate and blood pressure response. MATERIAL AND METHODS: We employed an intraneural electrode designed for the VN of pigs to perform VN stimulation (VNS). This was delivered using different numbers of contacts on the electrode and different stimulation parameters (amplitude, frequency, and pulse width), identifying the most suitable stimulation configuration. All the parameter ranges had been selected from a computational cardiovascular system model. RESULTS: Clinically relevant responses were observed when stimulating with low current intensities and relatively low frequencies delivered with a single contact. Selecting a biphasic, charge-balanced square wave for VNS with a current amplitude of 500 µA, frequency of 10 Hz, and pulse width of 200 µs, we obtained heart rate reduction of 7.67 ± 5.19 beats per minute, systolic pressure reduction of 5.75 ± 2.59 mmHg, and diastolic pressure reduction of 3.39 ± 1.44 mmHg. CONCLUSION: Heart rate modulation was obtained without inducing any observable adverse effects, underlining the high selectivity of the intraneural approach.

13.
Plants (Basel) ; 11(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559656

RESUMEN

A plant cell wall is a highly complex structure consisting of networks of polysaccharides, proteins, and polyphenols that dynamically change during growth and development in various tissues. The cell wall not only acts as a physical barrier but also dynamically responds to disturbances caused by biotic and abiotic stresses. Plants have well-established surveillance mechanisms to detect any cell wall perturbations. Specific immune signaling pathways are triggered to contrast biotic or abiotic forces, including cascades dedicated to reinforcing the cell wall structure. This review summarizes the recent developments in molecular mechanisms underlying maintenance of cell wall integrity in plant-pathogen and parasitic interactions. Subjects such as the effect of altered expression of endogenous plant cell-wall-related genes or apoplastic expression of microbial cell-wall-modifying enzymes on cell wall integrity are covered. Targeted genetic modifications as a tool to study the potential of cell wall elicitors, priming of signaling pathways, and the outcome of disease resistance phenotypes are also discussed. The prime importance of understanding the intricate details and complete picture of plant immunity emerges, ultimately to engineer new strategies to improve crop productivity and sustainability.

14.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232305

RESUMEN

Who would have thought that the discovery made by researchers at Washington University [...].


Asunto(s)
Exosomas , Humanos
16.
Front Cardiovasc Med ; 9: 943068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966562

RESUMEN

Introduction: Primary mitral valve regurgitation (MR) results from degeneration of mitral valve apparatus. Mechanisms leading to incomplete postoperative left ventricular (LV) reverse remodeling (Rev-Rem) despite timely and successful surgical mitral valve repair (MVR) remain unknown. Plasma exosomes (pEXOs) are smallest nanovesicles exerting early postoperative cardioprotection. We hypothesized that late plasma exosomal microRNAs (miRs) contribute to Rev-Rem during the late postoperative period. Methods: Primary MR patients (n = 19; age, 45-71 years) underwent cardiac magnetic resonance imaging and blood sampling before (T0) and 6 months after (T1) MVR. The postoperative LV Rev-Rem was assessed in terms of a decrease in LV end-diastolic volume and patients were stratified into high (HiR-REM) and low (LoR-REM) LV Rev-Rem subgroups. Isolated pEXOs were quantified by nanoparticle tracking analysis. Exosomal microRNA (miR)-1, -21-5p, -133a, and -208a levels were measured by RT-qPCR. Anti-hypertrophic effects of pEXOs were tested in HL-1 cardiomyocytes cultured with angiotensin II (AngII, 1 µM for 48 h). Results: Surgery zeroed out volume regurgitation in all patients. Although preoperative pEXOs were similar in both groups, pEXO levels increased after MVR in HiR-REM patients (+0.75-fold, p = 0.016), who showed lower cardiac mass index (-11%, p = 0.032). Postoperative exosomal miR-21-5p values of HiR-REM patients were higher than other groups (p < 0.05). In vitro, T1-pEXOs isolated from LoR-REM patients boosted the AngII-induced cardiomyocyte hypertrophy, but not postoperative exosomes of HiR-REM. This adaptive effect was counteracted by miR-21-5p inhibition. Summary/Conclusion: High levels of miR-21-5p-enriched pEXOs during the late postoperative period depict higher LV Rev-Rem after MVR. miR-21-5p-enriched pEXOs may be helpful to predict and to treat incomplete LV Rev-Rem after successful early surgical MVR.

18.
Front Plant Sci ; 13: 863892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401607

RESUMEN

Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.

19.
Mol Cell Biochem ; 477(6): 1681-1695, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35235124

RESUMEN

A significantly high percentage of hospitalized COVID-19 patients with diabetes mellitus (DM) had severe conditions and were admitted to ICU. In this review, we have delineated the plausible molecular mechanisms that could explain why there are increased clinical complications in patients with DM that become critically ill when infected with SARS-CoV2. RNA viruses have been classically implicated in manifestation of new onset diabetes. SARS-CoV2 infection through cytokine storm leads to elevated levels of pro-inflammatory cytokines creating an imbalance in the functioning of T helper cells affecting multiple organs. Inflammation and Th1/Th2 cell imbalance along with Th17 have been associated with DM, which can exacerbate SARS-CoV2 infection severity. ACE-2-Ang-(1-7)-Mas axis positively modulates ß-cell and cardiac tissue function and survival. However, ACE-2 receptors dock SARS-CoV2, which internalize and deplete ACE-2 and activate Renin-angiotensin system (RAS) pathway. This induces inflammation promoting insulin resistance that has positive effect on RAS pathway, causes ß-cell dysfunction, promotes inflammation and increases the risk of cardiovascular complications. Further, hyperglycemic state could upregulate ACE-2 receptors for viral infection thereby increasing the severity of the diabetic condition. SARS-CoV2 infection in diabetic patients with heart conditions are linked to worse outcomes. SARS-CoV2 can directly affect cardiac tissue or inflammatory response during diabetic condition and worsen the underlying heart conditions.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Diabetes Mellitus , Enzima Convertidora de Angiotensina 2 , COVID-19/complicaciones , Supervivencia Celular , Síndrome de Liberación de Citoquinas , Humanos , ARN Viral , SARS-CoV-2
20.
Pharmacol Res ; 175: 105982, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798263

RESUMEN

All the different coronavirus SARS-CoV-2 variants isolated so far share the same mechanism of infection mediated by the interaction of their spike (S) glycoprotein with specific residues on their cellular receptor: the angiotensin converting enzyme 2 (ACE2). Therefore, the steric hindrance on this cellular receptor created by a bulk macromolecule may represent an effective strategy for the prevention of the viral spreading and the onset of severe forms of Corona Virus disease 19 (COVID-19). Here, we applied a systematic evolution of ligands by exponential enrichment (SELEX) procedure to identify two single strand DNA molecules (aptamers) binding specifically to the region surrounding the K353, the key residue in human ACE2 interacting with the N501 amino acid of the SARS-CoV-2 S. 3D docking in silico experiments and biochemical assays demonstrated that these aptamers bind to this region, efficiently prevent the SARS-CoV-2 S/human ACE2 interaction and the viral infection in the nanomolar range, regardless of the viral variant, thus suggesting the possible clinical development of these aptamers as SARS-CoV-2 infection inhibitors. Our approach brings a significant innovation to the therapeutic paradigm of the SARS-CoV-2 pandemic by protecting the target cell instead of focusing on the virus; this is particularly attractive in light of the increasing number of viral mutants that may potentially escape the currently developed immune-mediated neutralization strategies.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Aptámeros de Nucleótidos/farmacología , Tratamiento Farmacológico de COVID-19 , Receptores Virales/antagonistas & inhibidores , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , COVID-19/enzimología , COVID-19/genética , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Mutación , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/genética , Técnica SELEX de Producción de Aptámeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...